

Secure OPen source softwarE and hardwaRe Adaptable framework

SecOPERA Presentation

CEA List

December 10th, 2025

SecOPERA Consortium

- 1. POLYTECHNEIO KRITIS (TUC)
- AEGIS IT RESEARCH GMBH (AEGIS)
- 3. ATHINA-EREVNITIKO KENTRO KAINOTOMIAS STIS TECHNOLOGIES TIS PLIROFORIAS, TON EPIKOINONION KAI TIS GNOSIS (ISI)
- 4. UNIVERSITY OF CYPRUS (UCY)
- 5. SECURITY LABS CONSULTING LIMITED (SLC)
- 6. ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS RESEARCH CENTER (AUEB)
- 7. PIERER INNOVATION GMBH (PINNO)
- 8. THALES SIX GTS FRANCE SAS (THALES)
- 9. COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (**CEA**)
- 10. IOTAM INTERNET OF THINGS APPLICATIONS AND MULTI LAYER DEVELOPMENT LTD (ITML)
- 11. VOGL SIMON (VoXel)
- 12. GREENCITYZEN (GREEN)
- 13. SPHYNX TECHNOLOGY SOLUTIONS AG (STS)

13 Partners from 7 Countries: *Greece, Germany, Cyprus, Ireland, Austria, France, Switzerland*

Project Identity Card

Motivation

Open-source code

Cannot be trusted out of the box and lacks appropriate security guarantees

Diverse code bases

Static analysis tools often fail in the vastly diverse open-source landscape

Non-verified hardware solutions

Similar to OSS open-source hardware lacks security guarantees and can be prone to vulnerabilities or even contain malware (e.g. Hardware Trojans)

Challenges

1

Open-source solution security

- Hard to justify in the current business interconnected market
- Lacks security guarantees

2

Third-party components need to be assessed in terms of security

3

Open-source cognitive models are already deployed

- Without security assurance
- Without guarantees against possible sensitive information leakage

Our mission

SecOPERA will provide a one-stop hub for complex open-source software and open-source hardware (OSS/OSH) solutions delivering to system designers and operators and OSS/OSH developers and testers the means to analyse, assess, secure/harden, and share open-source solutions.

The SecOPERA hub will offer an open-source framework supporting the DevSecOps lifecycle and generate solutions along with appropriate, verifiable security guarantees.

Objectives

- Research and develop **security hardening** and **enhancement** of open-source solutions
- Deliver **adaptable security** solutions for the open-source community
 - Establish the **SecOPERA hub** with a **pool** open-source solutions
- Develop the **SecOPERA framework** with the tools to support the secure development lifecycle
 - Validate SecOPERA solution in two industrial pilots across several use cases

Provide a viable, open-source compliant exploitation

Work Packages

- **WP1:** Project Management
- **WP2:** Project Dissemination and Outreach Activities
- WP3: User and Architecture Requirements
- WP4: Design of the SecOPERA Technology/Enablers
- **WP5:** Realization of the SecOPERA services
- WP6: Integration, Validation and SecOPERA Outputs

SecOPERA pillars

Decompose: Decomposes open-source solutions in components and classifies them in the SecOPERA layers (device, application, network, cognitive).

Audit/Assess: Performs vulnerability scan on each component and its dependencies and forms a vulnerability graph.

Secure: Consists of several OSS/OSH security modules which aim to harden each component.

Adapt: Adapts security modules in the OS solution

Update/Patch: Formally verifies the final solution and repeats the audit process after each update

SecOPERA functionalities

Decompose

Open-source solution analysis

Component dependency graph generation

Audit/Assess

Known vulnerability analysis based on CVEs/CWEs knowledge bases

Per layer security auditing and testing

Penetration testing based vulnerability discovery

Vulnerability graph generation

Formal verification of OSS services

Secure

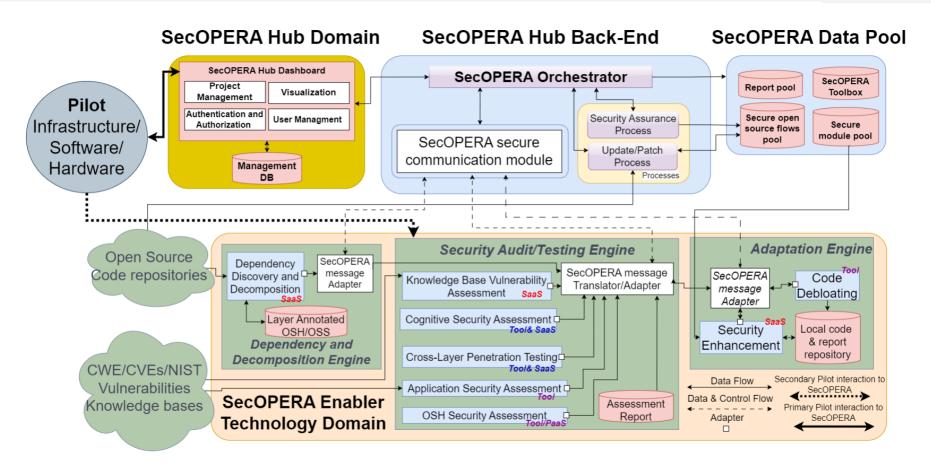
Design and development of secure pillar modules for mitigating discovered vulnerabilities

Release a secure module pool for per layer hardening to be used by OSS/OSH community

Adapt

Code debloating

Secure module integration for hardening OSS/OSH


Update/Patch

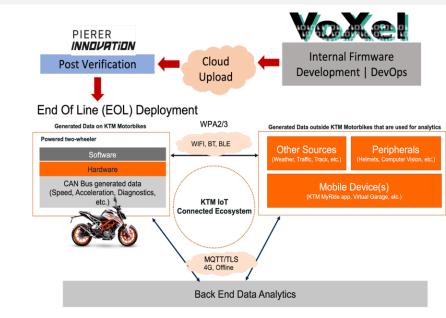
Monitor OSS/OSH repositories for updates

Control of Security Audits after each update

Architecture

Pilot 1

Secure Supply Chain in Automotive Industry


E-bicycle communication unit

Modules:

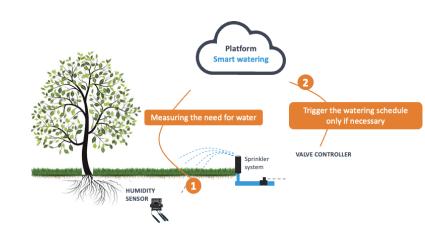
- Application processor
- RTOS
- Communication processor with LTE
- Various CAN-bus connected sensors

SecOPERA goals:

- Harden each component and the end solution
 - Application debloating
 - Leverage architectural features for security
 - Formally verify the IoT dongle
- Secure communications and data sharing

Pilot 2

Water Management IoT Critical Infrastructure


IoT solutions for water infrastructure

Ecosystem:

- IoT solutions for sewer, drinking irrigation
- Open-source
- Applied in smart cities

SecOPERA goals:

- Guarantee secure authentication of ecosystem administrators
 - E.g. Gardeners to start irrigation
- Secure OTA firmware updates
- Secure communication between infrastructure server and IoT devices
- Security hardened IoT components
- Deploy in real-world scenarios

Integrated tools

- IP Core Side Channel Assessment platform
- Static Threat Profile
- Dynamic vulnerability assessment
- Pentest toolkit
- Static C Source Code Analyser
- ML Evasion Assessment toolbox
- Membership Inference Assessment
- Model Inversion Assessment
- Model Extraction Tool

Available Secure Modules

⇔SecOPERA

- PostQuantum CryptoPrimitive HW IP Core Library
- Side Channel Attack Resistance Toolbox Library
- Shadow Stack and Landing Pads- enabled RISC-V soft core
- Trust-based Intrusion Detection and Prevention solution
- Quantum-resistant Network Security Stack
- Quantum-resistant Network Security Stack
 Dynamically reconfigurable Trusted Execution Environment primitives
- Code Debloating tools (C and Python)
- Membership Inference Hardening
- Model Inversion Hardening
- FastMLH
- ML Evasion Hardening

CEA Contribution

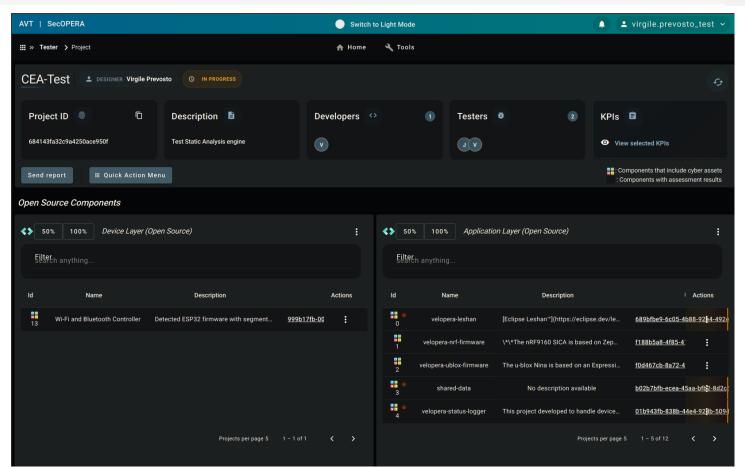
- Dedicated reports from Frama-C/Eva
- New Debloating plug-in
- Integration within SecOPERA eco-system
- Available on SecOPERA's <u>GitHub group</u>

Secopera-report Plug-in

- https://github.com/EU-SecOPERA/Static_analysis_subengine
- Proposes a classification of alarms emitted by Frama-C (mainly Eva) according to CWE nomenclature
- JSON report conforming to SecOPERA's schemas
- Options for describing where the code stands within the SecOPERA platform
- Dockerised version readily usable from the plaform

Debloating Plug-in

- https://github.com/EU-SecOPERA/Debloating_engine
- Lightweight alternative to SpareCode: removes statements that do not contribute to the final state of the program
- Based on the (new) Alias plug-in
- Still very experimental, testers welcome


Analysis Scripts for SecOPERA

- Part of Static Analysis Sub-engine repo (and documented in README)
- Facilitate setting up a suitable analysis environment for a SecOPERA component:
 - Create Docker image
 - Create Makefile template to drive Eva analysis
 - Create machdep if required
 - Launch main analysis
 - Create report and upload it through SecOPERA's REST API

Demo Time

SecOPERA Project /communities/secopera

This project has received funding from the European Union's Horizon Europe Research and Innovation program under grant agreement No 101070599.